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Abstract

The C programming language has been used successfully as the target lan-
guage of compilers for numerous programming languages. However, compil-
ing functional programming languages like Scheme and logic languages like
Prolog to C is complicated by the lack of support for proper tail calls in C.
Proper tail calls are function calls which reuse the caller’s stack frame for the
callee’s. Many higher-level programming languages require that all function
calls be implemented as proper tail calls.

This work explains why the standard C calling convention cannot sup-
port proper tail calls in the general case and presents a calling convention
which supports proper tail calls for C, while retaining all features of ANSI-
C function calls, especially variable argument functions, without incurring
substantial overhead. On RISC machines, performance is even increased in
some situations.

An implementation of this calling convention for the Alpha and the 1386
architectures in the GNU Compiler Collection (GCC) is described and the
generated code analyzed in detail. Furthermore, the problems with imple-
menting this calling convention for the SPARC are described and their solu-
tions sketched.



Zusammenfassung

Die Programmiersprache C wird erfolgreich als Zielsprache von Compilern fiir
verschiedenste Programmiersprachen eingesetzt. Leider wird die Ubersetzung
funktionaler Sprachen wie Scheme und logischer Sprachen wie Prolog nach
C erschwert, da C keine Proper Tail Calls zur Verfiigung stellt. Proper Tail
Calls sind Funktionsaufrufe, die den Stack Frame der aufrufenden Funktion
fiir jenen der Aufgerufenen wiederverwenden. Viele hohere Programmier-
sprachen setzen voraus, dafl alle Funktionsaufrufe als Proper Tail Calls im-
plementiert werden.

Diese Arbeit erklirt, warum die iibliche C Calling Convention Proper
Tail Calls im allgemeinen Fall nicht unterstiitzen kann und prisentiert ei-
ne Calling Convention, die diese Eigenschaft hat, unter Beibehaltung aller
Moglichkeiten von Funktionsaufrufen in ANSI-C, insbesondere Funktionen
mit variabler Argumentzahl, ohne groflen Aufwand zu verursachen. Auf
RISC Maschinen ergibt sich in manchen Situationen sogar ein Geschwin-
digkeitszuwachs.

Es wird eine Implementierung dieser Calling Convention fiir die Alpha
und die i386 Architekturen in der GNU Compiler Collection (GCC) beschrie-
ben und der generierte Code im Detail anlysiert. Weiters werden die Pro-
bleme bei der Implementierung dieser Calling Convention fiir die SPARC
beschrieben und deren Losungen skizziert.
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Chapter 1

Introduction

The C programming language has been used successfully as the target lan-
guage of compilers for numerous programming languages. However, compil-
ing functional programming languages like Scheme and logic languages like
Prolog to C is complicated by the lack of support for proper tail calls in C.
Proper tail calls are function calls which reuse the caller’s stack frame for the
callee’s. Many higher-level programming languages require that all function
calls be implemented as proper tail calls.

The lack of proper tail calls and other shortcomings of C have even moti-
vated the design of a C-like portable assembler language called C--. [JNO9S|
lists proper tail calls as one of the features that C lacks as a portable assem-
bler and advertises them as one of the main features of C--.

This work explains why the standard C calling convention cannot sup-
port proper tail calls in the general case and presents a calling convention
which supports proper tail calls for C, while retaining all features of ANSI-
C function calls, especially variable argument functions, without incurring
substantial overhead. On RISC machines, performance is even increased in
some situations.

An implementation of this calling convention for the Alpha and the 1386
architectures in the GNU Compiler Collection (GCC) is described and the
generated code analyzed in detail. Furthermore, the problems with imple-
menting this calling convention for the SPARC are described and their solu-
tions sketched.

1.1 Overview

Chapter 2 defines the notions of tail call, proper tail call and proper tail
recursion. It motivates the need for the support for proper tail calls in



the C programming language by describing some approaches to compiling
functional and logic programming languages to C and pointing out their
deficiencies.

Chapter 3 describes how the definition of a tail call from chapter 2 can
be applied to the C programming language.

Chapter 4 describes how arguments are passed from caller to callee in
the C programming language and the reasons behind this procedure. This is
compared with how arguments are usually passed in Pascal implementations.
It then describes in detail the calling conventions on Alpha, i386 and SPARC
platforms and summarizes these together with calling conventions on the
MIPS and PowerPC platforms.

Chapter 5 explains why the standard C calling convention does not sup-
port all cases of proper tail recursion and describes how the convention can
be changed to support all circumstances.

Chapter 6 describes the actual implementation of this calling convention
as a modification of the GNU Compiler Collection (GCC). Section 6.4 de-
scribes the tail call optimizations already done by GCC and points out their
limitations. Architecture independent and architecture dependent problems
are described and their solutions detailed. Section 6.7 summarizes all cases of
function calls and epilogues that can occur and describes how the generated
code handles them. Section 6.9 presents and analyzes generated assembler
code for the Alpha and i386 architectures using the new calling convention.

Chapter 7 compares the performance between function calls using the
standard C calling convention and the convention described in this work and
analyzes the results.

Finally, chapter 8 concludes and presents directions of further work.



Chapter 2

Proper Tail Recursion

This chapter defines the notions of tail call, proper tail call and tail recursion.
It motivates the need for the support for proper tail calls in the C program-
ming language by describing some approaches to compiling functional and
logic programming languages to C and pointing out their deficiencies.

2.1 Definition and Motivation

Definition tail call, proper tail call: A call from function f to function
g is a tail call iff that function call is the last thing the function f does and
nothing in f’s activation record is needed during the execution of the call
to g or after f’s return. A tail call from f to g is a proper tail call iff f’s
activation record is freed before calling function g. Note that f and g need
not necessarily be distinct.

Definition proper tail recursion: Proper tail recursion is the property
of a programming language implementation of implementing all tail calls as
proper tail calls.

The definition can easily be extended to a larger class of languages by
substituting “procedure”, “method”, or “predicate” for “function”.

Proper tail recursion is very important for functional and logic program-
ming languages, since languages in these families often lack looping con-
structs and express loops through recursion.

As an example, let us implement the factorial function. The factorial n!
is defined as

n

n!:1-2-...-n:Hk

k=1

It is quite natural to implement it in C as



int fac (int n) {
int k, prod = 1;
for (k = 2; k <= n; ++k)
prod *= k;

return prod;

In Scheme, it could be implemented as

(define (fac n)
(let loop ((k 2) (prod 1))
(if (> k n)
prod
(loop (+ k 1) (* prod k)))))

Although the call to loop looks like a function call (and in fact enjoys
the same semantics), there exists at most one activation record of loop at

any time. C functions corresponding to the Scheme code above would look
like this':

int fac (int n) {
return loop(n, 2, 1);

}
int loop (int n, int k, int prod) {
if (k > n)
return prod;
else
return loop(n, k + 1, prod * k);
}

A C compiler is not required to make the tail calls to loop proper, i.e.,
calling fac with a big value for n, could lead to a stack overflow. This cannot
happen in Scheme.

Most modern C compilers (including GCC [Sta99]) would implement the
call from inside loop to loop itself as a proper tail call, but not the call from
fac to loop.

Tail calls to functions other than the calling function itself are very com-
mon in languages like Scheme, ML or Prolog. Take, for example, this func-
tion, which is part of a Scheme interpreter written in Scheme [ASS96]:

1Since C, unlike Scheme, does not support closures, the environment (containing n)
has to be passed explicitly.



(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

The two last calls to eval are tail calls and must be implemented as
proper tail calls.
Note that this function contains no tail calls:

int fac (int n) {
if (n == 1)
return 1;
else
return fac(n - 1) * n;

The recursive call to fac is not the last thing fac does, because after this
call, it has to multiply its return value by n.

2.2 Implementing Functional and Logic Lan-
guages in C

There exist a lot of Scheme [KCR98] implementations which compile to C
code, among them Bigloo [SW95], Gambit-C [Fee|, Hobbit [Tam94],
Scheme->C [Bar89], Stalin [Sis| and Chicken [Win].

Of these, the only properly tail recursive one is Chicken. It uses a tech-
nique suggested by [Bak95|, which basically uses the C stack as a garbage
collected heap. Function calls are always tail calls, but it is irrelevant whether
those calls are implemented as proper tail calls by the C compiler. All Scheme
data structures are allocated as local variables, i.e., on the stack. Before each
function call, the stack is checked for overflow. If overflow is about to occur,
a copying garbage collection is started, the roots being the arguments to the
function about to be invoked and global variables. After finishing the garbage
collection, the function is then called using the new heap as its stack, begin-
ning at the end of the live data. Note that this technique does not depend on
implementation details regarding stack layout and that it allows (and in fact
requires) precise garbage collection, quite contrary to traditional compilation
techniques to C. It does, however depend on a stack check for every function
call, does a lot of unnecessary register saves and hence leaves a lot of obvious
garbage on the heap (stack). However, see chapter 8 for suggestions on how
to remedy this situation.



All other Scheme compilers mentioned suffer from their use of C function
calls to implement Scheme calls, some of them being more clever than others
about analyzing some cases of tail recursion and resolving them as jumps.

At least two ML compilers generating C code exist, namely sml2¢ [TLA92]
and Camlot [Cri92], both of them being properly tail recursive. Proper tail
recursion is achieved by using trampolines?. The function wishing to do a
proper tail call returns the address of the function to be called (plus a pointer
to an environment) to a driver function which just calls the next such function
in a loop. Disregarding the environment, such a loop would look like this:

typedef void* cont (void);

for (5;) {
cp = (contx*) (xcp) O);

}

Usually, this loop is unrolled multiple times so as to minimize the over-
head. Nevertheless, the overhead incurred by trampolines is still consider-
able, as described by Tarditi et al. [TLA92]. They close by suggesting two
C compiler extensions to make C more efficient as a target for compilers for
functional languages: global register variables and proper tail recursion. The
former is already supported by GCC.

The idea of the trampoline appears earlier in [Ste78], which describes
RABBIT, a compiler for Scheme which generates MacLisp code. Since the
latter is not properly tail recursive, Steele uses what he calls the UUD-HANDLER,
which appears to be the same in principle as the abovementioned trampo-
lines.

Logic programming languages, especially Prolog, have also often been
compiled to C, despite the difficulties involved. The first such system seems
to be described in [WR88|. It generates relatively straightforward C code and
does not treat tail calls specially, i.e., is not properly tail recursive, meaning
that loops might fail due to stack overflow.

Other systems, like Janus [GBD92], compile a whole program into a single
function. This function consists of one big switch statement, which acts as
a dispatcher for indirect jumps. Each jump target has a case label, as well
as a goto label. The latter is used for direct jumps. Indirect jumps cost
two jumps plus one table lookup, since they must be dispatched through
the switch (it is assumed that the C compiler implements the switch as a
lookup table dispatch). However, C compilers tend to consume tremendous

2[Cri92] does not mention that this technique is used. I verified that it is by trying out
Camlot.



amounts of memory and to be very slow at compiling large functions, so this
approach becomes impractical for larger programs. Furthermore, it prevents
separate compilation.

Due to these reasons, [DM94] argues for a combination of the latter tech-
nique with the use of trampolines. Predicates calling each other frequently
could be compiled into single C functions. Calls to other predicates would
involve returning from that function the data needed to identify the predicate
to call: the function of that predicate and the right entry point within it.

KLIC [FCRN94], which is an implementation of KL1, takes that ap-
proach. Every module is compiled into a single C function. Extra-module
calls, as well as indirect calls which cannot be proven to be intra-module, are
done through a trampoline. This approach seems reasonable. However, let
us examine the costs of the various types of jumps:

Type Cost

Intra-module, direct 1 direct jump

Intra-module, indirect | 1 direct jump, 1 table lookup, 1 indirect
jump

Extra-module 1 function return, 1 function call, 1 ta-
ble lookup, 1 indirect jump

Another approach is taken by Turbo Erlang [Hau94] and Mercury [HCS95].
They use GCC’s first class labels feature to make inter-procedural gotos.
Though effectively reducing each jump to a jump on the target machine,
it has the disadvantage of being unportable (since it depends on certain
properties of the generated code, which could change in any release of the
compiler), not allowing local variables in the C functions and not working on
some architectures, like the Alpha (see [HCS95] for details).

A very similar technique is used by wamcc [CD95]. Instead of using GCC’s
first class labels, it uses inline-assembler labels at the beginning of each func-
tion and instead of gotos uses function calls to jump to these labels. It
suffers from the same disadvantages as the first class labels approach.

2.3 Motivation

The previous section has shown that the provision of proper tail calls in C
would be a big help for implementations of functional and logic programming
languages, making obsolete a large number of often unportable and inefficient
kluges.

Another area where proper tail calls might prove beneficial are threaded
code interpreters. Direct threading is impossible to implement in ANSI



C [Ert95], but can be implemented in GNU C through the use of first-class
labels. The disadvantages are, analogous to the Janus approach, longer com-
pilation times and the impossibility of separate compilation. Proper tail calls
would solve these problems.

Finally, one could speculate that the availability of proper tail calls in C
might have a positive effect on the coding style of C programmers. Baker
argues [Bak97| that proper tail recursion makes it easier to write clear and
elegant programs which are also efficient.

All the mentioned motivations have in common that they require that
whether or not a call is implemented as a proper tail call is predictable. A
compiler for a programming language generating C code must be able to rely
that the C compiler generates proper tail calls, especially if the source lan-
guage requires proper tail recursion. The implementor of a direct threaded
code interpreter must know the circumstances under which the call to the
next instruction is implemented as a proper tail call. In other words: The
C compiler must guarantee that under certain well defined circumstances
calls are always implemented as proper tail calls. Furthermore, these cir-
cumstances should be easy to understand and should be general enough to
be easy to fulfill.

10



Chapter 3

Proper Tail Recursion in C

This chapter applies the definition of a tail call from the previous chapter to
the C programming language, closing with a definition of a tail call in C.

3.1 Tail Calls in C

According to our definition of a tail call in section 2.1, a function call has to
fulfill two requirements in order to be a tail call:

e It has to be the last thing the calling function does.

e The calling function’s activation record must not contain anything that
is needed during the execution of the call or afterwards.

3.1.1 Syntax

The first requirement can almost be resolved syntactically. We will take an
approach similar to [KCR98]: We define the places in which a function call
can be a tail call. Additionally, we require that the return types of the caller
and the callee match. If they do not, an implicit type cast must be performed
after the callee returns, hence the call is not the last thing the caller has to
do.

In order to do this we extend the C grammar given in the C99 stan-
dard [Ame99] by productions that are similar to those already in the gram-
mar, but are annotated with “tail” suffices. A new nonterminal, function-
call,,;, denotes a function call which may be a tail call. Note that such a
function call must also fulfill the second requirement in order to be a tail call.

All new productions and all changes to the C grammar are given in ap-
pendix A. This section only presents the interesting parts.

11



A function definition has the following syntax (the “opt” suffix describes
optional parts):

function-definition:
declaration-specifiers declarator declaration-list,,, compound-statement,,;

If nothing remains to be done after the execution of an if statement as
a whole, then that holds for its two branches as well. The switch statement
is much more complicated, due to C’s liberal syntax for this statement. If
a switch statement is tail-annotated, then we must tail-annotate within its
body the last statement and every statement which is directly followed by a
break statement.

selection-statement,;:
if ( expression ) statement,,;
if ( expression ) statement,,; else statement,,;
switch ( expression ) statement,,;

The switch statement requirement is implemented in compound-statement,,;
and friends, whose definitions are given in appendix A. The definitions are
as complicated as they are because we avoid ambiguities in the grammar.
These additions do not interfere with break statements in loops, since iter-
ation statements are never tail-annotated.

Since we must also tail-annotate the expressions of return statements
under all circumstances, we must modify the jump-statement definition of
the original grammar:

Jump-statement:
goto identifier ;
continue ;
break ;
return expression.y o ;

Since the comma operator is specified as first executing its left and then
its right operand, the latter can be tail-annotated if the expression itself is:

ETPTeSSLON, 4i)
assignment-expression,;

eTpTession , asSSIgNMent-erpression, ;

The argumentation for making both branches of the conditional expres-
sion tail-annotated is the same as for the if statement:

12



conditional-expression, ;.
logical-OR-expression,,;
logical-OR-expression ? expression,,; : conditional-expression,,;

Although C uses short-cut evaluation for logical AND and OR, we can-
not make the right operand of these operands tail-annotated. The reason
is that the standard specifies that the result of the operation be 1 if it is
logically true, i.e., a&&b is equivalent to a?(b?1:0) :0 and a| |b is equivalent
to a?1:(b?71:0). This “conversion” must be performed after a function call.

logical-OR-expression,,;:
logical-AND-expression,,;
logical-OR-expression || logical-AND-expression

logical-AND-expression,,;:
inclusive-OR-expression,,;
logical-AND-expression && inclusive-OR-expression

Now we finally get to where function-call,,; can be expanded:

POStfiz-erpression,
PTEMATY-eTPTESSION, 440
postfiz-expression [ expression ]
function-call,,;
postfir-expression _ identifier
postfiz-expression —> identifier
postfiz-expression ++
postfiz-expression ——

( type-name ) { initializer-list }
( type-name ) { initializer-list , }

function-call,,; looks exactly like a normal function call. After all, we just
wanted to see where we can find it, not define a new syntax for it:

function-call,,;:
postfiz-expression ( argument-expression-list,,, )

It is possible to construct situations in which a function call would be a
tail call according to our definition (see section 2.1) but would not satisfy
our syntax requirement. A very simple example:

void f (void) { gO;; }

13



The call to g is a tail call, because the empty statement does nothing.
The same goes for statements like 1+1;. As a consequence, our syntactic
requirement cannot catch all cases, although it will catch most non-contrived
tail calls. On the other hand, one could argue that executing the empty
statement is doing something, albeit its producing no side-effect. Function
calls which could be implemented as tail calls but do not satisfy the syntactic
requirement can also be written in Scheme, for example:

(let ((val (f)))
val)

This is of course semantically equivalent to (f).

3.1.2 Activation Record

The second requirement states that the calling function’s activation record
must not contain anything that is needed during the execution of the call or
afterwards.

Since a tail call is a function’s last action and its activation record is
destroyed after its return, what happens if something in the activation record
is needed after the tail call is undefined anyway, so we need not concern
ourselves with this case.

It remains to be investigated in which cases something in the activation
record of the caller is needed during the execution of the callee. An activation
record of a C function contains:

e Incoming arguments
e Saved registers
e The return address, possibly in the form of a saved register

e Local variables and spilled registers

Saved registers must be restored before a tail call, whereas the return
address becomes part of the callee’s activation record, if it is not a saved
register. What remains are incoming arguments and local variables (spilled
registers can be treated like local variables in this context). Since C only
supports call-by-value, these can only be accessed if their address is saved
somewhere not in the activation record of the caller. This can be

e The arguments to some function called from within the caller

14



e Global variables
e static variables within the caller

e Some other memory location known not only by the caller (like some
memory location on the heap)

3.2 Conclusion

Definition tail call in C: A function call in C is a tail call iff the following
three criteria are fulfilled:

e The call site is a function-call,,; according to our extended C grammar.

tat

e The return types of the caller and the callee match.

e The function containing the call site does not store the address of an in-
coming argument or a local variable, or something from which such an
address could be constructed, into some lvalue which is visible outside
the caller’s invocation. The only lvalues which are not potentially visi-
ble outside that invocation are incoming arguments and local variables
of the caller. Note that passing a value as an argument to a function
counts as an assignment.

15



Chapter 4

Calling Conventions for C

The function calling pattern of the C language is typical for procedural lan-
guages: Function invocations can be nested arbitrarily, including direct and
indirect recursion, and invocations finish in the reverse order of their start-
ing. The longjmp function can be seen as a straightforward extension to this
pattern, in that it allows finishing more than one invocation in one step, but
without violating the last-in-first-out principle, hence it need not concern us
here.

The described calling pattern suggests that the activation records be allo-
cated on a stack, which is what virtually all C compilers do. It is theoretically
possible to use other allocation strategies, like allocating activation records
on the heap, but this is not done, because of the added complexity and
performance losses.

Languages like Scheme and ML depart from the last-in-first-out principle,
in that function invocations can be saved and restored later on, allowing
functions to exit more than once, like predicates in backtracking languages
like Prolog.

The most important question for us is where the arguments for a function
are placed. The fastest way is obviously to place them into registers, which is
exactly what C compilers do on RISC architectures like the Alpha. However,
it is necessary to account for an unlimited number of arguments and register
sets are always very small. Hence, there needs to be some place to store
arguments which do not fit into the register set.

One possibility would be to use a large enough fixed region of memory
where outgoing arguments are stored. This has the disadvantage that argu-
ments for a function £ would have to be copied from that region into the
activation record if f called g and after that call referred to its arguments:

16



int £ (int a) {
int b = g();
return a + b;

¥

If a were stored in that fixed region, the call to g might disrupt its value.
Hence, £ would have to copy it into its activation record first, which means
that it would have to be copied twice: First, by the caller of f to the argument
region and then by f into its activation record. The reasons why this copying
is not an overhead for register arguments—which need to be copied to the
activation record to be preserved, as well—are that copying a value into
a register is cheaper than copying it into memory and that—at least on
RISC machines—it must be copied into a register before it can be written to
memory, anyway.

The obvious solution is to place the arguments on the stack before calling
the function. This is indeed what virtually all C compilers do.

The next question is the order in which the arguments are to be placed
on the stack. The two obvious alternatives are

e Push the arguments in the order they are specified, i.e., the last argu-
ment is on the top.

e Push the arguments in reverse order of specification, i.e., the first ar-
gument is on the top.

Pascal compilers [PD82] have traditionally pushed arguments in the order
of their specification. C compilers, on the other hand, use the reverse order.

The reason for this lies in the presence of variable argument functions.
Functions in C can be declared to take some fixed arguments plus any number
of additional arguments, the types of which can be arbitrary. Of course, the
caller and the callee must agree on the number and types of the arguments,
which is usually done through one of the fixed arguments, like the format
string in a printf function call. The C compiler however, does not and
cannot know the number and types of the variable arguments of a function.
Were C to use the Pascal way of pushing arguments on the stack, the fixed
arguments (which always come before the variable arguments) would have an
unknown offset from the top of the stack. This could of course be remedied
by pushing as an implicit argument for example the length of all variable
arguments on the stack. It is much easier, however, to just reverse the order
of arguments on the stack, thereby making the fixed arguments begin at a
known offset from the top of the stack.

17



Pascal C

Order in which arguments are pushed | Syntactic order | Reverse syntactic order
Arguments are popped by Callee Caller
Variable argument functions possible? | No Yes

Table 4.1: Comparison between Pascal and C calling conventions

Another import question is where the arguments are popped off the stack.
This can be done either in the caller or in the callee. In Pascal, where argu-
ments are fixed, both solutions are viable, because both the caller and the
callee know how much argument space has been popped. Pascal implemen-
tations tend to do it in the callee. The 1386 architecture even has a ret
instruction version which performs the function return and the popping in
one step. In C, variable argument functions do not know the amount of
arguments that has been pushed, so they cannot pop it. Hence, C imple-
mentations pop the arguments in the caller.

Table 4.1 shows a comparison between the Pascal and C calling conven-
tions as described here. Note that this is not a comparison between the two
languages but between the calling conventions their implementations usually
use.

4.1 Specific Calling Conventions

The following subsections describe in detail calling conventions for the Al-
pha, the 1386, and the SPARC. These are followed by a summary of these
three and MIPS and PowerPC calling conventions. The calling convention
descriptions are in prose, which is common practice. It should be noted,
though, that Bailey and Davidson have developed a formal language [BD95]
for the specification of calling conventions.

The term “structure” in the following subsections refers to both C structs
and unions.

4.1.1 Alpha

This section describes the standard calling convention used on the Alpha [Com00b,
Com00a] under Tru64 UNIX (the operating system formerly known as Dig-

ital UNIX (the operating system formerly known as Digital OSF/1)) and
Linux.

18



Name Use Callee-saved?
$0 Holds function results. Otherwise a | No
temporary register.
$1-$8 Temporary registers. No
$9-$14 Saved registers. Yes
$15 ($fp) | Used as the frame pointer if it is | Yes
needed. Otherwise a saved register.
$16-$21 Argument registers. No
$22-$25 Temporary registers. No
$26 ($ra) | Return address for calls. Yes
$27 ($pv) | Procedure value. No
$28 Reserved for the assembler. No
$29 ($gp) | Global pointer. No
$30 ($sp) | Stack pointer. Yes
$31 Always zero. n/a
$fo Holds function results. Otherwise a | No
temporary register.
$£1-$£9 Saved registers. Yes
$£10-$£15 | Temporary registers. No
$£16-$£21 | Argument registers. No
$£22-$£30 | Temporary registers. No
$£31 Always zero. n/a

Table 4.2: Conventional register usage on the Alpha

The Alpha has 32 integer registers ($0-$31) and 32 floating-point registers
($£0-$£31). Table 4.2 summarizes conventional register usage.

All code on the Alpha is position independent by convention. To address
static constants (like large integer constants, floating point constants, func-
tion addresses, string constants, ...) a so called GOT (global offset table) is
used. It contains the addresses of these constants. Since the Alpha allows
register-relative addressing only with 16 bit offsets, the GOT is divided into
segments, each of which can be up to 64K long. Functions in the same compi-
lation unit share the same segment, but functions from different compilation
units may use different segments. The address of the GOT segment of the
current function is stored in the global pointer (register $gp). This address
is determined relative to the current function. To this end, the code for a
function call stores the address of the function to be called in the procedure
value register ($pv) and performs a jump to that location. The callee then
sets the global pointer relative to the procedure value. A similar thing hap-
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pens after a function returns to its caller. If the caller cannot be sure that
the callee uses the same GOT segment, it must reload the global pointer. It
does this relative to the return address register ($ra). This means that a
function return must always be implemented as a jump to the address in the
return address register.

Arguments are passed in registers and on the stack. The first six argu-
ments are passed in registers: Argument n (with n from 1 to 6) is passed
in integer register 16 4+ (n — 1) if it is an integer, pointer or structure argu-
ment. If it is a floating point argument, it is passed in floating point register
16+ (n—1). Arguments from 7 onwards are passed on the stack beginning at
the address the stack pointer points to, in the direction of increasing memory
addresses. Each argument is aligned on an 8 byte boundary: Argument n
(with n > 6) is passed in memory location $sp+8(n—7). Arguments smaller
than 8 bytes are extended to that size. Unsigned 8 and 16 bit integers are
zero-extended, signed integers and 32 bit unsigned integers are sign-extended
and the contents of the 32 unused bits of floating point numbers are unde-
fined.

Structures are handled as integer parameters, even if they contain floating
point elements. A structure of length 8n is treated as n consecutive integer
arguments. This means that structures may be passed completely in consec-
utive registers, on the stack or even partly in consecutive registers and partly
on the stack.

Integer and pointer values are returned by a function to its caller through
the register $0. Floating point results are returned through $£0. Structure
return values are handled differently: The caller has to reserve space for the
structure to be returned by the callee (usually in the caller’s stack frame)
and pass the address of this block as an implicit first argument. The callee
stores the result structure there. This applies regardless of the size of the
structure.

The stack pointer always has to be aligned on a 16 byte boundary.

4.1.2 1386

There are a lot of calling conventions in use for the i386 architecture. GCC,
for example, allows some variations, like passing up to three arguments in
registers. I describe here the one used in Linux by default. Table 4.3 sum-
marizes integer register usage in this convention.

All arguments are passed on the stack, beginning with the first argument
at location %esp + 4, occupying increasing memory addresses. All arguments
must be aligned on 4 byte boundaries. The return address must be stored
in location %esp. This is usually handled by using the call instruction,
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Name Use Callee-saved?
heax Holds function results. Otherwise a | No
temporary register.
hebx, %esi, %edi | Saved registers. Yes
hecx Temporary register. No
hedx Holds the high 32 bits of 64 bit function | No
results. Otherwise used as a temporary
register.
hesp Stack pointer. Yes
hebp Frame pointer. May be unused. Yes

Table 4.3: Conventional register usage on the i386

which decrements %esp by 4, stores the address of the next instruction in
that location and performs a jump to an address given as its argument.

Integer and pointer function results are returned through the %eax reg-
ister!. Floating point results are returned through the top floating point
register ST(0) [Int00]. If the callee is to return a structure, the caller has to
reserve space for it (usually in its stack frame) and pass the address of this
block in an implicit first argument to the callee, which stores the structure
it returns there.

The floating point stack must be considered clobbered by a function call
(with the exception that the top floating point register contains a floating
point result if the callee returns one).

4.1.3 SPARC

This section describes the standard calling convention used on the SPARC
V8 [SPA92, The].

The SPARC differs from other common RISC architectures in its provi-
sion of so-called register windows, which makes its calling convention unique
among the common architectures.

At any time, there are 32 integer registers accessible to the application.
8 of them are global (%g0—%g7), meaning that they are always mapped to
the same CPU registers, just like ordinary registers on other architectures.
The other 24 integer registers are mapped to the current register window. A
SPARC implementation can have from 2 to 32 register windows.

llong long function results (64 bit integers) are returned with the low part in %eax
and the high part in %edx
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Let us assume an implementation with n register windows, numbered
from 0 to n — 1. A register window consists of 8 local registers, 8 in registers
and 8 out registers. Let us call these registers local; ;, in; ; and out; ;, with
¢t from 0 to n — 1 denoting the register window and j from 0 to 7. The in
registers overlap with the out registers of the next higher register window,
where we define the next higher register window of window n—1 to be window
0, i.e., registers in; ; and out;1 mod n,; are the same physical register. All
other registers do not overlap.

Formally: Registers f; ; and gi,; overlap (are the same register) iff (f
gNi=kNj=1)V(f=inAg=outAk=i4+1 modnAj=I1)V(f
ot Ag=inAi=k+1 modnAj=I).

To determine which register window is currently mapped to the register
set, the SPARC has a so-called current window pointer (CWP), which can
take on values from 0 to n — 1. The registers %ij, %17 and %o0j are mapped
to the physical registers incwp j, localcwp,; and outcwp,j, respectively, with
j from 0 to 7.

This setup is used by the calling convention to minimize the need for
saving registers to the stack in user code. Table 4.4 summarizes conventional
register usage on the SPARC.

The callee-saving of the in and local registers is automatically taken care
of by the register windows. In the prologue, a function issues a save instruc-
tion, which decrements the current window pointer (or sets it to the highest
value if it was 0). This makes the out registers become the in registers and
the previous in registers disappear. Furthermore, the old local registers dis-
appear and a new set becomes available. This automatically makes the old
stack pointer become the new frame pointer. Since save can also perform an
addition, the new stack pointer is also set with this instruction. The reverse
operation is performed in the epilogue by the restore instruction.

Since a SPARC implementation only has a very limited number of reg-
ister windows and a much higher number of function activations must be
supported, it is clear that the contents of register windows must sometimes
be written to memory. This is why the stack pointer (in register %sp) must
always point to a region of 64 bytes which is not used by user code. It may
be used by the system to store the local and in registers of a register win-
dow when and if that is necessary. If such an action is taken by the system,
the local and in registers of the register window to be saved are saved in the
block pointed to by the stack pointer of that register window. More formally:
Saving register window ¢ means storing registers in; ; and local; ; with j from
0 to 7 in the 64 bytes pointed to by out;¢.

The stack pointer must always be aligned on an 8 byte boundary.

Arguments are passed in registers %00-%05 and on the stack. Floating

22



Name Use Callee-saved?

hgO0 Always zero. n/a

hgl Temporary register. No

hg2-%ga | Global register. n/a

%g5-%g7 | Reserved for system. n/a

%i0 Incoming argument register, outgoing | Yes
function result.

hil Incoming argument register. Holds the | Yes
low 32 bits of outgoing 64 bit function
results.

%i2-%1i5 | Incoming argument registers. Yes

%16 (%fp) | Frame pointer. Yes

hi7 Return address — 8. Yes

%10-%17 | Saved registers. Yes

%00 Outgoing argument register, incoming | No
function result.

hol Outgoing argument register. Holds the | No
low 32 bits of incoming 64 bit function
results.

%02-%05 | Outgoing argument registers. No

%o6 (%sp) | Stack pointer. Yes

hoT Outgoing return address — 8. Other- | No
wise a temporary register.

%0 Holds function results. Otherwise a | No
temporary register.

%f1-%£31 | Temporary registers. No

Table 4.4: Conventional register usage on the SPARC
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point arguments are treated as integer arguments: A single precision floating
point argument as one integer argument and a double precision floating point
argument as two consecutive integers, the first containing the high 32 bits,
the second the low 32 bits of the floating point value. Structures are passed
by reference, meaning that the caller must make a copy of the structure to
be passed somewhere (usually in its own stack frame) and pass its address
as an integer argument. The copy must be made since the callee is allowed
to change the structure pointed to by the argument, but C requires that
structures be passed by value.

Integer and pointer return values are passed by the callee to the caller
through the %00 register?. 64 bit integer registers are returned through reg-
ister %00 and %o1, the former holding the high 32 bits, the latter the low 32
bits. Floating point return values are passed through register %£0. Struc-
tures are returned by copying them to some location determined by the caller
(usually in the caller’s stack frame), the address of which is passed on the
stack.

The first six arguments are passed in registers %00-%05, using %00 to
store the first argument and %05 to store the sixth. As already mentioned,
the stack pointer must always point to a region of 64 bytes not used by user
code, entry to a function being no exception. The next 4 bytes (at %sp + 64)
are reserved for the address a structure return value should be copied to. If
the callee does not return a structure, these 4 bytes are unused, but must
be reserved nevertheless. The next 24 bytes (at %sp + 68) may be used by
the callee to store its incoming register arguments, in order to make variable
argument list processing easier. They must be reserved by the caller in any
case. Following that (at %sp + 92) are arguments past the sixth, increasing
syntactic order corresponding to increasing memory addresses. All stack
arguments must be aligned on 4 byte boundaries.

Returning structures in the SPARC standard calling convention is a topic
in its own right. The pointer to the memory block a structure to be returned
is to be copied to at %sp + 64 is only one part of the story. The other is that
if the caller wants the callee to copy the structure to that location, the next
but one instruction after the call to the function, i.e., the instruction at the
location %07 + 8 upon entry to the function, must be an unimp instruction,
the immediate operand of which must be the low-order 12 bits of the size
of the structure to be returned. Otherwise, that instruction can be any
ordinary instruction. Before the callee copies the structure into its destined
location, it checks whether the instruction at the return address is an unimp

2Note that the callee has to store the value in %i0 if it uses the restore instruction
afterwards to switch register windows.
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instruction. If it is and if its operand matches the low-order 12 bits of the
structure the callee is about to return, the callee copies the structure and
returns to the instruction after the unimp. Otherwise, it returns normally,
but without copying, meaning that if the unimp instruction is not present,
the structure is not copied, which of course only makes sense if the caller
is not interested in the return value. It also means that if the caller and
the callee disagree about the low-order 12 bits of the size of the structure,
control is transferred to the unimp instruction, thereby generating a trap,
usually resulting in a core dump.

It is also worth mentioning that while GCC on the SPARC generates the
unimp instruction in the caller, it does not check for this instruction in the
callee, i.e., it always copies the structure and always returns to the next but
one instruction after the call. In other words, it assumes that the unimp
instruction is present in the caller and that the low-order 12 bits of the sizes
match.

4.1.4 Summary

Table 4.5 contains a summary of the three calling conventions described in
the previous subsections. In addition, it summarizes the following two calling
conventions:

e The N64 calling convention for the MIPS, as described in [Sil96].

e The System V calling convention for the PowerPC, as described in [SI95].
The following items are the same on all summarized calling conventions:
e Integer and floating point return values are always passed in registers.

Integer return values always in integer registers, floating point return
values always in floating point registers.

e The stack grows downward, i.e., towards lower memory addresses.
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Alpha MIPS N64 | PowerPC | SPARC V8 | i386
System V
Word size in 64 64 32 32 32
bits
%) General 31 31 32 39-519 (31 6
% purpose integer visible at
g registers any time)
| General 31 32 32 32 8 (arranged
o .
5 | purpose FP stack-like)
h3] registers
D
= Hardware none none return register stack- and
=) .
2 support for address windows frame-
<¢ | function calls register pointer
registers,
call, ret
instructions
" Saved integer 9 11 19 17 5
5 registers
i}o Integer 6 8 8 6 0
= argument
registers
Saved FP 9 8 18 0 0
registers
FP argument 6 8 8 0 0
registers
w FP arguments never only in never always n/a
E passed in variable part
& integer registers of vararg
%o function
‘2 | Independent no no yes n/a n/a
§ integer /FP
F argument
register
numbering
floats no no yes no no
promoted to
doubles
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passed in/on

register (LR)

Alpha MIPS N64 | PowerPC SPARC V8 | 1386
System V
Structures value value reference reference value
passed by
Structure never double FPs never never never
3) elements passed if not
= . . .
2 | in FP registers unioned
8 Structures never up to 128 up to 64 bits | never never
% returned in bits (2 (2 registers)
register(s) registers)
Structure value | implicit first | implicit first | implicit first | designated implicit first
address passed argument argument argument location on argument
as/in stack
Stack alignment | 16 16 16 8 4
in bytes
Argument 8 8 4 (8 for FP 4 4
alignment in arguments)
bytes
Stack usage in 16 16 16 96 4
bytes for
recursive
function
without
~4 | arguments (per
& | invocation)
N Circumstances one word of one word of | two words of | variable always
under which local local outgoing argument
minimum frame | variable variable parameter function
size is fully space or space or space, local taking using
utilized (least register save | register save | variable six argument
space wasted) area on the area on the space, CR registers and
stack stack register save | returning a
area or structure, all
register save | local and in
area on the registers live
stack at outgoing
call site
Return address | register register special stack stack

Table 4.5: Calling conventions summary
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Chapter 5

A C Calling Convention for
Proper Tail Calls

In order to determine why the C calling convention is not suitable for proper
tail calls, let us assume a calling conventions where all arguments, including
the return address, are passed via the stack, like on the i386. A function call
f(1,2) would look something like this:

X:
push 2
push 1
push x_ra
jmp £
x_ra:

pop

pop

pop

We see here the two main characteristics of the C calling conventions:
Arguments are pushed in reverse order and are popped by the caller. Now
let’s say the function f is defined as follows:

void f (int i, int j) {
g(3);
+

Using the C calling convention, this would be compiled into something
similar to this:
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f ra
3

x_ra x_ra
1 1
2 2

After jmp f After jmp g

Figure 5.1: Stack contents for the execution of the call to £

f:
push 3
push f_ra
jmp g
f_ra:
pop
pop
jmp 0(sp)

We assume that sp is the stack pointer and 0(sp) the word pointed to
by it (offset 0).

Figure 5.1 shows the contents of the stack during the execution of the call
to £. The call to g is, though being a tail call, obviously not a proper tail
call, since the arguments to f remain on the stack during the execution of g.

Let us now try to convert the call to g to a proper tail call. What do
we have to do in order to accomplish this? First, we need to get rid of
f’s activation record. In this case, it contains the arguments i, j, and the
implicitly passed return address. We can just delete i and j, but we need
to remember the return address since it is the address g has to return to
after it has completed execution. Then we have to push the arguments to g,
including the return address and do the call:

f:
pop ri
pop
pop
push 3
push ril
jmp g
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We assume that rl is a temporary register. The effect of this code is
that g returns directly to x, from which f was called. Now let us look at
what happens when g returns to x. After the call to f is completed, x
pops the arguments it pushed for £, which are three. However, the function
returning to x, namely g, has been passed only two arguments, which means
that x pops too much. Similarly, had the function g taken more than three
arguments, x would have popped too little. This results from the simple
fact that when proper tail calls are possible, the function returning to the
point after a call site is not necessarily the function that was called at that
call site. In the general case, the compiler cannot know which function will
return, and hence cannot know how many arguments it would have to pop.
For example, assume f were defined thus:

void f (int i, int j) {
if (rand() % 2) g(3);
else h(4, 5, 6);

The function returning to x might now be either g, h or a function called
from within one of these functions.
It is possible to solve this problem in two different ways:

e Let someone else instead of the caller pop the arguments.

e Make the function returning to the caller report how much argument
space needs to be popped.

The first alternative more or less implies that the callee pop the argu-
ments, like in the Pascal calling convention, while the second one departs
only little from the C calling convention. It is clear, however that return-
ing a second value from every function is more overhead than just letting
the callee pop the arguments. There is another catch to the two solution,
though. In the case of variable argument functions, the callee does not know
what amount of arguments it has been passed, and hence cannot pop them
or return their amount to the caller. It is thus clear that we have to do some
extra work for variable argument functions.

We have already argued in chapter 4 that the compiler cannot know the
amount of arguments a variable argument function has been passed when the
C calling convention is used. This information is only available at the call
sites. Since we demand that the callee pop the arguments, we must transport
the information from the caller to the callee, i.e., we need an additional,
implicit argument. Although it seems obvious that we must use this argument
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to pass the amount of arguments to the callee, there is another possibility:
Pass the address that the stack pointer has to be restored to, i.e., the address
of the bottom of the outgoing arguments on the stack, which I call “bottom
pointer”. In order to compare the two in terms of efficiency, two operations
have to be taken into account:

e (Calculating the actual value when performing a call to a variable ar-
gument function. This is a null-operation for the argument block size
approach, since the amount of arguments is a constant known at com-
pile time. For the bottom pointer approach, it can be calculated as
the stack pointer plus a constant known at compile time. This is a win
of one instruction for i386, but makes no difference on RISC machines
like the Alpha, which can add a register and a constant and move the
sum to another register in one instruction.

e (Calculating the address at which an outgoing argument for a proper tail
call has to be placed. This is just the sum of the bottom pointer and a
constant known at compile time for the bottom pointer approach, but
it is more complicated when the argument block size is used. For that
case, the address is the sum of the stack pointer, the argument block
size and a compile-time constant, which costs at least one instruction
more than the bottom pointer calculation.

We conclude that the argument block size solution is at least as expensive
as the bottom pointer approach both for i386 and RISC machines, while the
latter is cheaper on RISC machines. Consequently, I have implemented the
bottom pointer solution.

The bottom pointer is only passed to variable argument functions. Should
it be necessary to allow calls to fixed argument functions with more actual
than formal arguments (the behavior of such a call is undefined in ANSI C),
the bottom pointer would have to be passed to and used in fixed argument
functions as well.

[ will refer to this calling convention with the name “proptail”.

31



Chapter 6

Implementation

In the preceding chapter we have altered the C calling convention in order to
make proper tail calls possible. This chapter describes the technical problems
to be faced in implementing it and outlines an actual implementation in GCC.

6.1 The Approach

Since it was the goal of this work not only to produce a properly tail re-
cursive implementation of C and thereby demonstrating its feasibility, but
also to make it an attractive option for implementors of functional and logic
languages to use, it was clear from the onset that it would be best to aim for
this implementation to be included in the standard distribution of GCC.

Changing the calling convention GCC uses by default was clearly not an
option. A change which breaks as much code as this would do would have
to provide very significant advantages in major areas to be accepted into the
GCC distribution, and to most of the GCC maintainers proper tail recursion
is (quite understandably) a side issue at best.

The approach was therefore to establish a second calling convention.
Functions to be called using this convention have to be syntactically marked
accordingly. Of course, it should be possible to mix calling conventions.

6.2 GCC

The GNU Project’s [Fou] GNU Compiler Collection (GCC) [Sta99], which
was originally called GNU C Compiler, is a portable and optimizing compiler
for several programming languages, most prominently C.

GCC uses two intermediate representations:
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e Tree code is a target independent representation, roughly corresponding
to C syntax trees. It is usually generated by the parser of the source
language.

o Register Transfer Language (RTL) code is the representation on which
most of the optimizations operate. It describes the effects of target
machine instructions, which makes RTL code target dependent, even
though RTL itself is not, since it operates on a lower level. RTL code
is usually generated from tree code.

GCC compiles from a source language (the standard distribution includes
front-ends for C, Objective-C, C++-, Fortran, Chill and Java byte-code) to
assembler for the target machine. Compilation is done in several passes:

e Parsing. As already mentioned, this translates the source language
program to tree code, after type-checking. Constant folding and some
arithmetic simplifications are done here.

e RTL generation. For the C language, this is actually not a separate
pass from parsing. Inlining decisions happen in this pass, as well as
tail recursion detection and optimization.

e Several optimization passes, such as jump optimization, common subex-
pression elimination and loop optimization.

e Data flow analysis. This identifies basic blocks and computes liveness
of pseudo-registers.

e Instruction combination and register movement passes. The former
tries to combine primitive instructions into more complex, hopefully
faster ones. The latter tries to avoid register to register moves caused
by instructions requiring values in specific registers by changing the
register in question.

e Instruction scheduling.

e Register allocation, which consists of four passes: Register class pref-
erencing, which determines the register class for each pseudo register;
local register allocation, which determines hard registers for pseudo reg-
isters used only in single basic blocks; global register allocation which
tries to assign hard registers to all remaining pseudo registers; reload-
ing, which assigns stack slots to all pseudo registers, which did not get
hard registers and produces the required loads and stores.
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e Instruction scheduling. This pass is repeated here to take into account
the spills for pseudo registers, which ended up on the stack.

e Jump optimization.

e Delayed branch scheduling, which tries to place instructions into delay
slots of branches, and branch shortening, which determines which sorts
of jumps can be used on which occasions.

e Conversion from traditional register usage to usage of a register stack,
which is only needed for the Intel i386’s FPU.

e Final. This outputs the assembler code, while performing peephole
optimizations.

e Debugging information output.

6.3 Syntax

GCC already has a way of specifying non-standard attributes in declarations,
namely with the __attribute__ keyword. It is followed by an attribute name
with optional arguments, within double parentheses. Since we only need a
way to flag a function, we don’t need any arguments:

extern __attribute__((tailcall)) int func (int);
Functions can also be defined with this attribute:

__attribute__((tailcall)) int func (int x) {

Of course, it is also necessary to flag pointers to functions with the at-
tribute if the functions it points to use the new calling convention:

__attribute__((tailcall)) int (*fptr) (int) = O;

Note that the compiler will assume undeclared functions to use the stan-
dard calling convention.

Some people have suggested that it would be advantageous to have a
syntax for function calls which guarantees that the function call in question
is implemented as a proper tail call. In cases where this is not possible,
the compiler would give an error or at least issue a warning. I have not
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implemented such a syntax because I believe that the criteria for proper tail
calls are easy enough to understand and because I doubt that such a syntax
would be accepted into GCC, especially in the light that it does not add any
semantic content to the language: The same code would be generated for
proper tail calls regardless which syntax they use. The only difference would
be that calls which are not implemented as proper tail calls would cause the
compiler to complain with the new syntax. The sole use of such a syntax
would be as a debugging aid.

6.4 The Existing Tail Call Optimization

GCC already has an optimization for certain cases of tail calls. First of
all, the optimization must honor the standard C calling convention, i.e., it
cannot implement calls to functions taking more arguments on the stack
than the caller as proper tail calls. Furthermore, there are a lot of pragmatic
restrictions:

e On the Alpha, it can only handle calls to static functions, due to the
GP problem (see section 6.8.1).

e When generating position independent code on the 1386, it can only
handle calls to static functions.

e It cannot handle indirect calls (calls through function pointers).
e Calls to variable argument functions are not handled.

e It does not handle the following case: Outgoing argument a is evaluated
before outgoing argument b, but the evaluation of b depends on the
value in the stack which is overwritten by a.

e It does not handle calls if the caller stores any local variables or tem-
poraries on the stack.

The optimization operates entirely at the RTL level. The code producing
the RTL code for the function call (in calls.c) tries to produce two ver-
sions of the call: the normal function call sequence and the proper tail call
sequence. The normal call sequence is always produced, while the proper
tail call sequence generation can fail for several reasons (see above). The
reason why two sequences are produced is that it is not known at this stage
whether the call is in a tail position. Instead of the actual code for the call, a
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call placeholder expression containing the generated sequences is inserted
into the RTL code.

After generating RTL code for the function, a separate pass over the
RTL code (in sibcall.c) detects the tail calls, performs a few other tests to
determine whether they can be coded as tail calls, and selects the appropriate
calling sequences accordingly.

6.5 Requirements for Proper Tail Calls

In section 3.1 we have identified two requirements that must be fulfilled so
that a tail call can be implemented as a proper tail call:

e The call must be in a tail position.

e An address of a non-static local variable of the function may only be
stored in another non-static local variable of that function.

Section 3.1.1 describes how to solve the first requirement by changing and
extending the C grammar. While being a nice solution from a theoretical
point of view, this is not very feasible to do in practice, if only for the code
duplication and maintenance overhead.

Clean solutions corresponding closely to the grammar extension would be
to use an attributed grammar [ASUS85] or to annotate the parse tree after
parsing. Unfortunately, neither of these are options in GCC. The former is
not because GCC uses the Bison parser generator, which does not provide
for attributed grammars, and switching to an attribute grammar system like
Ox [Bis93] would almost certainly not be approved of by the maintainers.
Annotating the parse tree after parsing is not an option either because the
whole parse tree is never constructed. Instead, GCC generates parse trees for
expressions but produces RTL code for statements immediately, discarding
all parse trees after their corresponding RTL code has been generated.

So we are back at extending the grammar. I chose not to do this for the
abovementioned reasons and because it, too, would be unlikely to be accepted
by the GCC maintainers. Instead, I decided for the simplest solution: use
the existing code.

The code in GCC (in sibcall.c) that determines whether a call is in a
tail position operates at the RTL level. The logic it applies is quite simple:
If the sole successor of the block containing the call is the exit block, the call
is a tail call.

The existing tail call optimization in GCC has two redundant checks
to assure that the second requirement is met: First it makes sure that the

36



calling function does not store any local variables or temporaries on the stack.
After RTL generation it also prevents tail calls in functions whose RTL code
contains an ADDRESSOF expression’.

Forbidding the ADDRESSOF expression in RTL code basically means that a
function which uses the C address operator & even on a global variable cannot
make tail calls. The restriction concerning stack usage means that functions
evaluating more complex expressions (the complexity limit depending on the
number of available registers, i.e., on the target architecture) cannot make
tail calls. These checks are clearly much too restrictive and too unpredictable.

There are two ways an address of a non-static local variable can be stored
in some location other than a non-static local variable: by direct assignment
or by being passed as a parameter to a function. I have taken a conservative
but simple approach to the problem. If the address of a non-static local
variable or a value from which it can be reconstructed is found on the right
hand side of an assignment or in the parameter list of a function call, the
function being compiled will not make proper tail calls.

A less restrictive test would be to prohibit only assignments to non-local
and static local variable and of uses as actual parameters, but the following
examples makes clear that this requires data flow analysis:

void f (void) {
int x = 0, *y;
y = &x;
g(y);

It would also be possible to differentiate between different tail calls:

void £ (int a) {
int x = 0, *xy = 0;
if (a)
g(y);
else {
y = &x;
g(y);

Here, the first call to g could be implemented as a proper tail call, but
not the second. Anyway, I have refrained from implementing more complex

L ADDRESSOF describes the address of a temporary. Stack slots are allocated for tempo-
raries whose addresses are taken.
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Local variables and temporaries

Saved registers Stack growth

Incoming arguments

Figure 6.1: Stack frame layout

analyses because the simple test mentioned above is absolutely predictable
and the case above can easily be avoided by putting the else branch into a
separate function.

I have implemented this check to occur during parsing, i.e., while tree
code is constructed and translated to RTL code. For assignments and func-
tion calls it is checked whether the right hand side respectively the actual
parameters contain as a subexpression the address of a non-static local vari-
able. In C, there are two ways to get such an address: use the address
operator or implicitly convert an array into a pointer. For example, if a is
declared as int a[3][4], the expression a is the address of the whole array.
a[0] is the address of the first sub-array and a[0] [0] is the first element of
the first sub-array. Only the latter is not an address. One also has to account
for arrays within structs, for example, but overall, the code to perform this
test is rather simple.

6.6 Architecture Independent Issues

Figure 6.1 depicts the layout of an activation record. If a proper tail call is
to be performed, the outgoing arguments have to be placed in the incoming
argument space of the caller, which is at the bottom of the activation record.
This poses two problems:

e The incoming argument space might not be large enough to hold all
outgoing arguments.

e The values of the outgoing arguments might depend on the incoming
arguments.
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6.6.1 Space for Outgoing Arguments

The first problem can easily be solved by reserving the additional amount
between the incoming arguments and the saved registers. A solution not
wasting that space would have to be less efficient in the general case. A sim-
ple, but very inefficient strategy would be to copy the part of the space to be
overwritten somewhere not affected, before placing the outgoing arguments
there. It would be more efficient to evaluate and place the arguments in an
order that would not need the copying of any stack slot. For simplicity’s
sake, let us disregard the saved registers space and pretend that the local
variables are above the incoming arguments space. Furthermore, let us as-
sume that every outgoing argument depends on two specific local variables,
which, due to their position on the stack, would have to be overwritten. Both
of them must be intact when the last outgoing argument is to be evaluated,
i.e., at least one outgoing argument must not have been placed at its final
position (if it were, one of the local variables would have been overwritten).
One could argue that in that case the local variables should have been placed
somewhere else. Assume that there were no other local variables or tempo-
raries in the caller besides these two. It is now clear that there needs to
be at least one empty stack slot above the incoming arguments. Although
in most cases it might be possible to save some stack space in comparison
to the simple reservation approach, I decided against it because the cost of
implementation is too big and the potential benefit too little.

For variable argument functions, the implementation calculates the addi-
tional amount of stack space to be reserved on the assumption that only the
fixed arguments are passed to the function (the worst case). This is simple
and does not add overhead to the generated code.

6.6.2 Dependencies between Incoming and Outgoing
Arguments

The second problem is quite similar to the clash between outgoing arguments
and local variables discussed in the previous subsection. Here it is even more
obvious that in some cases, either an incoming or an outgoing argument must
be copied. A trivial solution would be to evaluate the outgoing arguments
but place them somewhere on the stack where they do not overwrite the
incoming arguments. I have taken a similar, but more efficient approach:
The compiler allocates a temporary for each outgoing argument and places
all outgoing arguments in their temporaries. After all of them have been
evaluated, the contents of the temporaries are copied to the positions of their
corresponding arguments on the stack. That way, GCC will analyze which
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incoming arguments it can overwrite without sacrificing the correctness of
the resulting code. For the other temporaries, it will allocate stack slots.

6.6.3 Stack Pointer Readjustment

On RISC architectures, it is customary that the stack frame allocated by a
function includes the space for the outgoing arguments. That way, a function
needs to modify the stack pointer only twice: on entry and on exit. If we
want to keep that arrangement, we must “unpop” the outgoing argument
space that has been popped by a callee after a non-tail call. This seems to
be inefficient, but consider the alternative. If the outgoing argument space
were not preallocated, we would have to modify the stack pointer before each
function call, i.e., at least as often as for the preallocated case. In fact, we
actually save a stack pointer modification in the case of tail calls, since they
do not return to their direct callers.

6.6.4 Variable Argument Functions

As argued in chapter 5, variable argument functions using the proptail calling
convention are passed an implicit argument, namely a pointer to the bottom
of the incoming arguments on the stack, which I refer to as the “bottom
pointer”. This is also the address the stack pointer has to be restored to
when the function returns, as well as the address outgoing arguments for
a proper tail call have to be placed relative to. I have chosen to pass this
address as the first argument without any special-casing in the argument
passing convention.

The only serious problem is setting the stack pointer to this address or
relative to this address before exiting a function or performing a proper tail
call, since this happens in GCC in machine specific code in a pass after
register allocation, which means that the register allocator does not know
that the argument will be used in the epilogue unless there were some clean
way of communicating that fact, which to my knowledge there is not. Hence
I took the simple approach of saving the first argument in variable argument
proptail functions in the stack frame in the prologue and fetching it from
there in the epilogues. The actual implementation is architecture dependent.

One improvement to this simplistic approach on the 1386, which passes
all arguments on the stack, would be to take the bottom pointer from its
incoming argument slot when returning from a function. Then the addi-
tional saving of this argument in the prologue could be omitted for variable
argument functions which do not perform proper tail calls. Note that this
approach cannot be taken for setting the stack pointer before a proper tail
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call since the stack slot for the bottom pointer might already have been over-
written by the outgoing proper tail call arguments. Note also that this is not
a valid approach on RISC architectures, since this argument is passed in a
register and may not be live at that point. On the other hand, we know that
the bottom pointer in a proper tail call to another variable argument func-
tion must contain the same address as the bottom pointer given to the caller,
so we could speed up this case (a variable argument function performing a
proper tail call to a variable argument function) a bit.

6.7 A Summary of all Scenarios

1. Calling a proptail function from a non-proptail function.

Such a call is never a proper tail call.

(a) Calling a non-vararg function

i. Push arguments
ii. Call
iii. Readjust stack pointer
(b) Calling a vararg function
The first argument for this kind of call is the bottom pointer.

i. Push arguments
ii. Call
iii. Readjust stack pointer

2. Calling a proptail function from a proptail function

(a) The call is not a proper tail call
The calling sequences are the same as for case 1.

(b) The call is a proper tail call

i. Calling a non-vararg function

A. Place the arguments in their tail call positions (the space
beginning with the incoming arguments of the callee). If
the caller is a vararg function, this is the area beginning
at where the bottom pointer points to.

B. Adjust the stack pointer so that it points to the end of
the arguments

C. Call
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ii. Calling a vararg function
The first argument for this kind of call is the bottom argument
pointer. If the caller is itself a vararg function, the value for
this argument is the same as the caller got.

A. Place arguments in their tail call positions

B. Adjust the stack pointer so that it points to the end of
the arguments

C. Call

6.8 Architecture Dependent Issues

6.8.1 Alpha
Variable Argument Functions

Section 6.6.4 describes the problems and the solution with accessing the
bottom pointer in the epilogues in variable argument functions. The specific
solution on the Alpha is to save the first argument register ($16) together
with the callee-saved registers on the stack.

In the epilogues, this address is loaded as the last thing before the jump.
In the epilogue before a proper tail call, this address must additionally be
offset by the size of the outgoing arguments, which takes an additional in-
struction. See section 6.9.2 for an example.

GP

Section 4.1.1 elaborates on the use of the register $gp for addressing static
constants. It is set to a compilation unit specific value upon entry to a
function. This has the consequence that after a call to a function which
could set the register to another value, the register must be set again. Since
that value is the same for all functions in the same compilation unit, that
had to be done after calls to functions in other compilation units. Proper tail
calls change that, however. Assume that £ and g are functions in the same
compilation unit, and that h is a function in another compilation unit. f
performs a call to g, which performs a proper tail call to h. h returns directly
to £, so that the value in $gp is not the right value for £, although f did a
normal call to a function in its own compilation unit. The existing tail call
optimization (see section 6.4) makes this scenario impossible by forbidding
proper tail calls to non-static functions. Unfortunately, we do not have this
luxury. The solution is to set $gp after each call to a proptail function.
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Figure 6.2: The problem with stack alignment on the Alpha

Stack Alignment

Section 4.1.1 mentions that the stack pointer must always be aligned on a 16
byte boundary. This has a subtle implication on the calling convention for
proper tail calls. Imagine a function f taking one argument (8 bytes) on the
stack and a function g taking two arguments (16 bytes) on the stack. f and
g are mutually properly tail recursive. Figure 6.2 illustrates this example.
The vertical separators denote 16 byte boundaries. Assume f is passed its
stack argument at location p on the stack, which means that $sp points to
p upon entry to f£. Clearly, p must be 16 byte aligned. f must now place
the outgoing arguments on the stack. The obvious locations, namely p — 8
and p cannot be used, since p — 8 is not 16 byte aligned and the first stack
argument must always be passed at an address so aligned. Hence, if £ cannot
assume that the 8 bytes at p+ 8 are not used by the caller of £, it must place
the arguments at p — 16 and p — 8. g now places its stack argument for f at
location p — 16 and calls £ with $sp pointing there. This is a situation where
two mutually recursive functions use unbounded stack space, i.e., they are
not properly tail recursive.

The conclusion is that the proptail calling convention for the Alpha must
include the constraint that code calling a proptail function with an even
number n of stack arguments must assume that the value in the position
where the hypothetical stack argument n + 1 would be placed (the location
8 bytes higher than the location of the last stack argument) is clobbered by
the call.

The Alpha calling convention manual [Com00b] is not clear on this topic
(it does not even mention it), even though GCC always produces code obey-
ing that constraint.
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6.8.2 1386
Variable Argument Functions

The bottom pointer is saved between the return address (plus additional
space for outgoing proper tail call arguments if the needed size for outgoing
proper tail call arguments is larger than the size of the incoming arguments)
and the saved frame pointer (which is kept in register %ebp) or, if the frame
pointer has been omitted (via the -fomit-frame-pointer option), the saved
callee-saved registers.

The epilogue for proper tail calls is straightforward: After restoring callee-
saved registers, pop the saved bottom pointer into the stack pointer register
hesp, subtract the size of the outgoing arguments, and jump.

The epilogue for function exits is a little more complicated because of a
bug in the version of GCC I used?: A function exit epilogue may not use a
jmp instruction to return. Hence, it must be arranged for the return address
to be on top of the stack after setting the stack pointer to the bottom pointer.
This address must therefore be moved to a register first and, after the stack
pointer has been modified, pushed. Then, a ret will have the desired effect.
On modern 1386 implementations, this seemingly awkward maneuver might
actually improve performance, since these processors have a return address
stack, which speeds up ret instructions. Using a jmp instead of a ret would
completely invalidate this cache, leading to costly misses. See chapter 8 for
another approach to this problem.

See section 6.9.1 for an example of both epilogues.

Position Independent Code

In position independent code on the 1386, global data is referenced through a
global offset table, whose address is determined upon function entry relative
to the program counter and stored into the register %ebx. Since %ebx is a
callee-saved register, it must be restored before executing a proper tail call.
This means that the address of the function to call must be loaded from the
global offset table before restoring %ebx and must be saved into a caller-saved
register. This register can then be used as the target of the proper tail call.

6.8.3 SPARC

Although I have not yet implemented support for the proptail calling conven-
tion on the SPARC, I want to discuss the problems this architecture poses,

2The bug has been fixed in a later CVS version, but I have not upgraded yet.
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hsp —
64 bytes for the system to save register window

Pointer to structure return value

24 bytes to store register arguments

Incoming arguments past the sixth, if any

Figure 6.3: SPARC stack contents upon function entry

since it differs significantly from the other two architectures and it is not
obvious that the calling convention modifications detailed in chapter 5 are
even possible on the SPARC.

The biggest obstacle is that the stack pointers of all register windows used
by user code must always point to 64 byte regions of memory not modified
by user code. Furthermore, it is forbidden to modify the stack pointer of any
register window other than the current (the only such register window would
be the next higher one, the stack pointer of which is the frame pointer of the
current register window), since the system might have “swapped out” that
register window and modifying the contents of its save region would mean
that its registers contents would be clobbered when it is restored again. It
is not even possible to copy this region and modify the stack pointer of that
window to point to the copy since a trap (through an interrupt, for example)
may occur between any two instruction. In other words: We may never
modify the frame pointer, neither may we modify the 64 bytes it points to.

It is not forbidden, however, to modify the stack pointer of the current
register window, as long as we make sure that we do not use the 64 bytes
it points to. Figure 6.3 illustrates the contents of the stack upon function
entry (before executing a potential save instruction).

The first thing to do is to enlarge the stack frame so that it can hold
outgoing arguments to all proper tail calls the function makes. This means
that the stack pointer might have to be modified. This modification auto-
matically means that the 64 byte region for the system to save the register
window moves accordingly. The potential pointer to the memory block where
a structure return value must be copied to does not need to be moved now,
neither does the region for storing register arguments. After having modified
the stack pointer, the save instruction may be issued.

The next question is how to exactly handle a proper tail call. First, the
callee must be entered with the same register window current as was current
upon entry to the caller. Otherwise, a proper tail call would consume at least
64 bytes of memory to save a register window. This means that the outgoing
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register arguments must be stored in registers %10-%1i5 instead of %00—%05,
at least if the caller uses save/restore. Outgoing stack arguments must be
written over the incoming stack arguments, as usual. Here, care must be
taken that the pointer to the memory block for a structure return value be
moved to the position it must occupy upon entry to the callee before it is
overwritten by an outgoing argument, which happens if the callee takes at
least 7 more stack arguments than the caller, and may happen if the caller is
a variable argument function and the callee takes at least 7 stack arguments.

After this has been done, the caller must issue the restore instruction if
it used the save instruction in the prologue. The only thing left to be done
now before executing the call is to modify the stack pointer to point exactly
92 bytes above the highest outgoing argument.

In the proptail calling convention, the callee must pop its arguments from
the stack. It is obvious that we cannot just set the stack pointer to the point
below the incoming arguments, since that space is likely to be used by the
caller for temporaries, which might be destroyed if a trap occurred. The
simple solution is to simply set the stack pointer to 64 bytes above the end
of the incoming arguments, so that a possible trap is taken care of. It is then
up to the caller to readjust the stack pointer to where it was before the call,
just as it must be done on other architectures as well.

Since the stack pointer on the SPARC must be aligned on an 8 byte
boundary, but arguments only on 4 byte boundaries, the same minor stack
alignment problem occurs as on the Alpha. See section 6.8.1 for the solution.

The standard SPARC calling convention specifies that structures are
passed to the callee by reference. The proper tail call implementation pre-
sented in this work assumes that tail calls passing structures must be im-
plemented as proper tail calls if the requirements are met (see section 6.5).
If that is to be upheld, the SPARC proptail convention will have to pass
structures by value, like on the Alpha and the i386. Whether or not that
should be done I leave open, but it has to be considered and documented
before the proptail code is included in the GCC distribution.

6.9 Generated Code

Now we take a look at the code generated by the modified GCC. We will
use two examples to demonstrate most of the phenomena described in this
chapter. The first one consists of two simple, mutually recursive functions:

int fal (int x, int i, int n, int dummy) {
if (1 > n)
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return Xx;
return fa2(x * i, i + 1, n);

+
int fa2 (int x, int i, int n) {
if (i > n)
return Xx;

return fal(x * i, i + 1, n, 0);

It is not hard to see that they are identical except for the dummy argument
of fal, which I introduced so that the two functions have a different number
of incoming arguments.

The second example is a directly recursive function with variable argu-
ments, which computes the same mathematical function as the two functions
above, namely the factorial:

int fav (int x, int i, int n, ...) {
if (i > n)
return Xx;
return fav(x * i, 1 + 1, n, 1, 2, 3, 4);
+
6.9.1 1386

Let us first examine code generated for the i386. The function fal is com-
piled to this assembler code using the options -03 -fomit-frame-pointer
-mpreferred-stack-boundary=2 -fno-inline -fno-schedule-insns
-fno-schedule-insns2. Instruction scheduling has been omitted to make
the generated code more readable:

fal:
pushl  Jesi
pushl  Yebx
movl 12(%esp), %ebx
movl 16 (%esp), %ecx
movl 20(hesp), hesi

cmpl hesi, ‘hecx
jle .L40
movl %ebx, %eax
popl hebx
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hesp —

saved %ebx

saved %esi

return address

X — %ebx

i — hecx

n — hesi
dummy

(a) (b)

— heax
~—heax
~—%hebx * hecx
~—%ecx +1

~—Y%esi

(c) (d)

Figure 6.4: Stack contents during the execution of fal

popl

ret
.L40:

movl

leal

%esi
$16

8(%esp), heax
1(%hecx), %hedx

imull  Y%ecx, %ebx

movl
movl
movl
movl
popl
popl
popl
Jjmp

The contents of the stack during the stages of the execution of fal are
illustrated in figure 6.4. Figure 6.4a shows the contents of the stack and of
hesp after the two registers %ebx and %esi have been pushed. The vertical
rule marks the end of the incoming argument space. Figure 6.4b shows which
stack slots are moved into which registers. This is done directly after the two

pushes.

The code for the consequence of the if statement (before the label .L36)
restores not only the two saved registers but, by virtue of the argument to

heax, 12(%esp)
hesi, 24(%esp)
hedx, 20(%esp)
hebx, 16(%esp)
%hebx

hesi

hecx

fa2

the ret instruction, also pops the incoming arguments.
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Figure 6.5: Stack contents for fal before the jump to fa2

The code after the if statement is much more interesting, as it performs
a proper tail call. The function called is fa2, which takes one argument less
than fal. The result of this is that fal has to modify the stack accordingly,
which includes moving the return address to a lower position. Figure 6.4c
illustrates that the return address is moved into the register %eax.

Figure 6.4d shows the values which are then written onto the stack over
the incoming arguments. After that, Jiebx and %esi are restored and the
return address is popped off the stack?.

Figure 6.5 shows the result of these stack manipulations, i.e., the contents
of the stack before the jump to fa2. Note that the return address on the
stack is the same address that fal had to return to, i.e., it does not lie within
fal.

This is the code for fa2, compiled with the same options:

fa2:
subl $4, Yesp
pushl  Jesi
pushl  Jebx
movl 16 (hesp) , %ebx
movl 20 (%esp), hecx
movl 24 (%hesp), hesi

cmpl hesi, hecx
jle .L42
movl %hebx, heax

popl hebx
popl hesi

3The compiler uses pop %ecx because this is more compact (%ecx is a caller-saved
register, so it can be modified at will by fal without saving it (see section 4.1.2)). The
more obvious instruction would have been addl $4, Yesp.
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hesp —

saved %ebx
saved jesi
~—Yeax
return address — heax  +—%ebx * jfecx
X — %ebx ~—%hecx +1
i — hecx ~—hesi
n — hesi —0

(a) (b) (c) (d)

Figure 6.6: Stack contents during the execution of fa2

popl hedx
ret $12

.L42:
movl 12(%esp) , %eax
leal 1(%hecx), %hedx
imull  Yecx, %ebx
movl heax, 8(%esp)
movl $0, 24(%esp)
movl hesi, 20(%esp)
movl hedx, 16(%esp)
movl hebx, 12(%esp)

popl hebx
popl hesi
jmp fal

Figure 6.6a shows the contents of the stack and the stack pointer after
hesi and %ebx have been saved. Note that the compiler generated code
to reserve one stack slot before pushing these two, which corresponds to the
empty box above the vertical rule, which again marks the end of the incoming
argument space. The reason for this empty slot is that fa2 calls fal, which
takes one argument more than fa2, hence the incoming argument space alone
is not sufficient to hold all arguments. Figure 6.6b show which registers the
incoming arguments are saved in. The code for the consequence of the if
statement not only has to restore the two saved registers but needs to pop
the empty stack slot and the incoming arguments as well.
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Figure 6.7: Stack contents for fa2 before the jump to fal

The code for the proper tail call again has to reorganize the stack. In this
case, the return address, which is moved into %eax (illustrated in figure 6.6c)
has to be moved up one stack slot, i.e., into the empty stack slot. This and
the other stores into the stack are depicted in figure 6.6. That being done,
the two saved registers have to be restored and fal must be jumped to. The
contents of the stack and the stack pointer are shown in figure 6.7.

The following is the code for the variable argument function fav:

fav:

subl $16, Yesp

movl 20 (%esp), hedx
pushl  Jedx

pushl  Jedi

pushl  Jesi

pushl  Jebx

movl 36 (%hesp), ‘hecx
movl 40 (%esp), %hesi
movl 44 (%esp) , hebx
movl 48 (%esp), hedi

cmpl hedi, hebx

jle .L46

movl %hesi, %heax
popl hebx

popl hesi

popl hedi

movl 20 (%esp), hedx
popl hesp

pushl  Jedx
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22

24

26

28

30

32

34

36

38

40

ret

.L46:
movl 32(hesp), ‘heax
leal 1(%ebx), %edx
imull  %ebx, %esi
movl %heax, —-36(%ecx)
movl $4, -4(%ecx)
movl $3, -8(%ecx)
movl $2, -12(%ecx)
movl $1, -16(%ecx)
movl %hedi, -20(%ecx)

movl %hedx, -24(%ecx)
movl %hesi, -28(%hecx)
movl %hecx, —-32(%ecx)

popl hebx
popl hesi
popl hedi
popl hesp
subl $36, %esp
jmp fav

Line 2 reserves 4 stack slots which may be used for the outgoing proper
tail call arguments. fav takes at least three arguments, but makes a proper
tail call with 7 arguments, so in the worst case (it only gets 3 arguments) 4
more stack slots are required.

Line 3 saves the bottom pointer argument to the stack.

Lines 15 to 21, excluding line 15 are the epilogue of the function exit.
First, the callee-saved registers are restored. Then, in line 18, the return ad-
dress is moved to register %edx. Line 19 sets the stack pointer to the bottom
pointer and lines 20 and 21 jump to the return address (see section 6.8.2 for
why this is not implemented with a jmp instruction).

Lines 35 to 39 are the epilogue for the proper tail call. After restoring the
callee-saved registers, the stack pointer is set to the bottom pointer minus
36, which is the space needed for the seven explicit arguments, the bottom
pointer argument and the return address. The indirect jump in line 40 finally
commits the proper tail call.

Figure 6.8a shows the contents of the stack after line 7 has been executed.
It also shows where the bottom pointer points to. The space at the bottom
with the three dots depicts the arguments coming after the three mandatory
arguments. It occupies two stack slots, but in general, it might be arbitrarily
large or small, including length zero. Figure 6.8b shows which stack slots are
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()

Figure 6.8: Stack contents during the execution of fav
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Figure 6.9: Stack contents for fav before the proper tail call

copied to which registers in lines 8 to 11. Figures 6.8c and 6.8d show the stack
operations for the proper tail call. The former illustrates the copying of the
return address to %eax in line 23, and the latter the building of the new stack
frame in lines 26 to 34. Here we see the reason for the four empty stack slots:
They guard against the case of the new stack slot overwriting parts of the
old stack slot which are still needed, in this case the saved registers and the
copy of the bottom pointer. Should the new stack frame contain too many
elements for the register set to hold, some values would have to be spilled.
The stack slots holding these values would be above the saved registers, i.e.,
could never be accidentally overwritten by the new stack frame.

Figure 6.9 finally shows the contents of the new stack frame right before
the jump to fav in line 40. It also illustrates that the bottom pointer points
to the bottom of the outgoing arguments. Note that this is the same location
as it pointed to upon entry to the function, as shown in figure 6.8.

6.9.2 Alpha

The situation on the Alpha is quite a bit different. Here, the first six argu-
ments plus the return address are passed in registers.

The code for the Alpha has been generated using the options -03
-fno-inline -fno-schedule-insns -fno-schedule-insns2. Again, [ have
omitted instruction scheduling so that the code be more readable. Let us look
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at the generated code for fal:

fal:
ldgp $29,0($27)
$fal. .ng:
1da $30,-16($30)
stq $26,0($30)
cmple $17,$18,$1
mov $16,$0
beq $1,$L35
mull $16,$17,$16
addl $17,1,8$17
1dq $26,0($30)
1da $30,16($30)
jmp $31,fa2
$L.35:
1dq $26,0($30)
1da $30,16($30)
ret $31,($26),1

Surprisingly, GCC generates code which allocates a stack frame and even
saves the return address there. The reason for this is that this happens in
the target machine specific code for the Alpha and I have not taken the time
to optimize this in the case where a function only does proper tail calls.
The potential benefits of such an optimization are analyzed in chapter 7,
though. Note that the allocated stack frame is 16 bytes large, although only
8 bytes are used. This is due to the 16 byte stack alignment constraint (see
section 6.8.1).

Apart from the saving and restoring of the return address register ($26)
and the stack frame allocation thus necessitated, there is nothing surprising
here. The dummy argument, passed in register $19, is simply ignored.

The code for fa2 is very similar:

fa2:
ldgp $29,0($27)
$fa2. .ng:
lda $30,-16($30)
stq $26,0($30)
cmple $17,$18,%$1
mov $16,%$0
beq $1,$L37
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10

12

14

16

mull $16,$17,$16

addl $17,1,$17

mov $31,$19

1dgq $26,0($30)

1da $30,16($30)

br $31,$fal..ng
$L.37:

1dq $26,0($30)

1da $30,16($30)

ret $31,($26),1

There is one obvious difference between these two functions. fal jumps
to the label fa2 whereas fa2 jumps directly to fal. .ng, avoiding the reload
of the $gp register (see section 4.1.1). The two functions were obviously
compiled in the same compilation unit, because the latter jump could not
have legally been shortcut otherwise. Since GCC compiles functions one
by one, there was no way for it to know at the time of the compilation of
fal that fa2 would be contained in the same compilation unit, so it had to
conservatively assume otherwise. The linker should detect such cases and
optimize the jumps, although the GNU linker does not do so.

Let us now look at variable argument functions, as they require some spe-
cial handling on RISC machines due to the passing of arguments in registers.
The code produced for the function fav, using the same compiler options as
above, is this:

fav:
1dgp $29,0($27)
$fav. .ng:
lda $30,-144($30)
stq $26,16($30)
stq $16,24($30)
mov $16,$3
stq $19,120($30)
stq $20,128($30)
stq $21,136($30)
stt $£19,72($30)
stt $£20,80($30)
stt $£21,88($30)
cmple $18,$19,$1
mov $17,%$0
beq $1,$L39
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18

20

22

24

26

28

30

32

lda $1,3

lda $2,4

mull $18,$17,$17

addl $18,1,%$18

lda $20,1

lda $21,2

stq $1,-16($3)

stq $2,-8($3)

1dq $26,16($30)

1dq $22,24($30)

lda $30,-16($22)

br $31,$fav..ng
$L39:

1dq $26,16($30)

1dq $30,24($30)

ret $31,($26),1

Before we examine the inefficiencies of this code, let us look at the proper
tail call specific things it does.

Since it is the first argument, it is stored in the register $16. In line 6
it is stored on the stack, in line 7 copied to register $3. In lines 23 and 24
the two outgoing arguments to be stored on the stack are stored in locations
relative to this address. Furthermore, the stack pointer is set relative to this
address before performing the proper tail call in line 27 (after fetching it
from the stack in the preceding line). Before leaving the function, the stack
pointer is set to this address in line 31. Note also that this bottom pointer
is passed through to the callee, which is also a variable argument function,
directly. This always happens at proper tail calls between variable argument
functions.

The inefficiencies in this code are quite numerous:

e Integer and floating point argument registers beginning with the fourth
are saved to the stack, but never restored.

e The stack frame is unnecessarily large.

e The bottom pointer argument is copied to the stack as well as to register
$3, all the while residing unchanged in register $16.

The reason for the first two inefficiencies lies in GCC’s implementation of
variable arguments on the Alpha. The va_arg macro, which accesses argu-
ments past the last mandatory argument, operates solely on the stack, so all
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registers which could contain variable arguments are saved to the stack. The
reason why the stack frame is so large is that GCC always allocates enough
space to save all argument registers, even if that much space is not neces-
sary, probably to keep the implementation simple. There are 12 argument
registers ($16-$21 and $£16-$£21), each 8 bytes wide, so this accounts for
96 bytes. The rest is reserved for saving other registers and for the outgoing
arguments for the proper tail call.
See section 6.8.1 for why the first argument is copied to the stack.

6.10 Limitations
The current implementation has some minor limitations:

e It never implements calls from a function using alloca as proper tail
calls. This limitation is no more restrictive in practice than the con-
straint that no address within the stack frame may be assigned to a
variable or passed as a parameter, since not assigning the result from
alloca as a variable or passing it as a parameter is a rather useless
exercise.

e It does not implement calls from a function using variable size arrays,
which are a GCC extension as well as part of the C99 standard [Ame99].
The reason is simply that implementing that would require additional
effort and I see the support of this feature as being of minor importance.

e Variable argument arrays are not supported as arguments to proptail
functions. Again, the reason is that this does not have a priority for
me.

e Position independent code is not yet supported on the i386. Sec-
tion 6.8.2 outlines the problem with proper tail calls and PIC on the
1386 and the solution to that problem. It will be implemented soon.
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Chapter 7

Performance

In this chapter the run-time performances of the proptail calling convention
and the standard C calling convention (without the existing tail call optimiza-
tion described in section 6.4), both as implemented in GCC, are compared.
The numbers in this chapter have to be taken with a grain of salt, firstly be-
cause one should never take benchmarks too seriously and secondly because
an unnumbered CVS version of GCC was used for all these tests. Further-
more, it must be stressed that the proptail convention implementation has
not been optimized for speed yet and, as will be shown, there are some areas
where performance can be greatly improved. Chapter 8 outlines some opti-
mizations which I may pursue the implementation of in the near future. The
goal of this chapter is simply to show that the proptail calling convention
provides performance comparable to that of the standard calling convention
and may, if optimized, provide much superior performance in certain cases
on RISC architectures to the standard calling convention in the future.

Times are always given in seconds. They are the arithmetic means of the
user times of three runs on an unloaded system. System time was negligible
in all runs and the user time differences between the runs were always little
enough to be caused by the system clock granularity.

The systems used for the tests are a 500 MHz 21264 Alpha and a 300
MHz Pentium II.

7.1 Fixed Argument Functions

The first benchmark compares the performance of very simple function calls.
Given the two functions

int fal (int x, int i, int n, int dummy) {
if (i > n)
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Compiler flags Standard | Proptail
-03 -fno-inline 10.46 12.72
-03 -fno-inline -mpreferred-stack-boundary=2 9.20 12.68
-03 -fno-inline -fomit-frame-pointer 9.16 11.83
-03 -fno-inline -mpreferred-stack-boundary=2 -fomit-frame-pointer 7.31 10.32

Table 7.1: Run times with varying compiler flags on the Pentium II 300

return Xx;
return fa2(x + i, 1 + 1, n);
+
int fa2 (int x, int i, int n) {
if (i > n)
return Xx;

return fal(x + i, i + 1, n, 0);

I measured the time taken for the loop

for (i = 0; i < 10000000; ++i)
fa1(1, 1, 20, 0);

The options that were used for compiling are -03 -fno-inline. Addition-
allyy, on the 1386 the options -mpreferred-stack-boundary=2
-fomit-frame-pointer were used, because they give better performance.
Table 7.1 shows the run times for the loop on the i386 with and without
the proptail convention with various compiler flag combinations. All other
results for the 1386 presented here exhibit similar behavior with regard to
compiler flags, so I refrain from presenting the other (slower) run times.

On the Alpha, instruction scheduling seems to make code slower some-
times. Table 7.2 presents the run times for the loop on the Alpha with and
without proptail convention and instruction scheduling. All following results
for the Alpha are obtained by measuring both with and without instruction
scheduling and using the better of the two times.

There are two primary factors which can cause the differences in perfor-
mance between the two calling conventions in this benchmark (apart from
instruction scheduling and register allocation):

e Stack modifications. On the i386, the proptail code must move the
return address on the stack because the two functions take different

60




Instruction scheduling? | Standard | Proptail
Yes 3.35 2.70
No 3.36 2.58

Table 7.2: Run times with and without instruction scheduling on the 21264
500

numbers of arguments. This is not an issue on the Alpha, however,
because there the return address is passed in a register.

e The number of times a function returns. Since all calls between func-
tions fal and fa2 are proper tail calls in the proptail convention, the
complete execution of the call fa1(1, 1, 20, 0) entails only one func-
tion return, whereas in the standard calling convention, it entails 21
returns.

The first factor runs in favor of the standard calling convention, while the
second is in favor of the proptail convention. On the 1386, the first factor is
obviously more costly than the second one can make up for. See chapter 8
for how this problem might be solved.

On the Alpha, only the second factor applies for this benchmark, so it
may rightfully be assumed that the proptail convention is faster, at least if
mostly proper tail calls are performed.

To verify that the advantage is still on proptail’s side on the Alpha when
stack arguments are involved (which, according to the above reasoning it
should be), the same benchmark has been run, but with four dummy argu-
ments added to each function, making fal take 2 stack arguments and fa2
take one. The proptail version took 2.81 seconds to run and the standard
convention version 3.95 seconds.

To demonstrate that proper tail calls exhibit much better performance
than standard function calls for deep recursions, due to the improved locality
of reference on the stack, the following loop with the same two functions as
above has been timed:

for (i = 0; i < 1000; ++i)
fal(1, 1, 200000, 0);

The results are shown in table 7.3.
This is the code generated for fal with instruction scheduling enabled:
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Machine Standard | Proptail
21264 500 13.23 1.81
Pentium II 300 23.48 8.1

Table 7.3: Run times for deep recursion

1 fal:
ldgp $29,0($27)
$fal. .ng:
4 mov $17,%$1
mov $16,$0
6 lda $30,-16($30)
addl $1,$0,$16
8 addl $1,1,$17
cmple $1,$18,$1
10 stq $26,0($30)
beq $1,$L49
12 1dgq $26,0($30)
1da $30,16($30)
14 jmp $31,fa2
$L.49:
16 1dq $26,0($30)
1da $30,16($30)
18 ret $31,($26),1

As can easily be seen, the prologue and the epilogues in this function do
unnecessary work. Line 6 reserves a stack frame and line 10 saves the return
address. The reverse operations, namely the restoring of the return address,
even though the register holding it is not modified, and the freeing of the
stack frame are carried out in lines 12, 13 and in lines 16, 17. If these 6 lines
are removed, the code runs in 1.20 seconds, as compared to the 1.81 seconds
before!. This is an optimization which could easily be done by the compiler
and may give great performance improvements for code which only performs
tail calls, like functional code after CPS transformation [Ste78, App92].

1t should be remarked that the 1.20 seconds were achieved with instruction scheduling
disabled. The code with instruction scheduling enabled took 1.40 seconds.
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Machine Standard | Proptail
21264 500 4.42 4.99
Pentium II 300 7.87 16.61

Table 7.4: Run times for variable argument functions

7.2 Variable Argument Functions

Variable argument functions are handled differently from fixed argument
functions in the proptail calling convention in that they take an additional ar-
gument, called the bottom pointer (see chapter 5). To measure the overhead
incurred by this convention in contrast to the standard C calling convention,
the following two functions are used:

int favl (int x, int i, int n, int dummy, ...) {
if (i > n)
return Xx;
return fav2(x + i, i + 1, n);
+
int fav2 (int x, int i, int n, ...) {
if (1 > n)
return Xx;
return favi(x + i, i + 1, n, 0);
b

This loop was timed:

for (i = 0; i < 10000000; ++i)
favi(1, 1, 20, 0);

The only difference between these functions and the ones used for the
fixed argument test is that these may be called with arbitrary additional
arguments. The results of this benchmark are summarized in table 7.4.

While the speed difference for the Alpha seems to be plausible, this is
much less so for the i386. The speed difference is only an indirect consequence
of the proptail calling convention. In order to substantiate this claim, let us
look at the code generated for the favil function with the proptail convention:
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favi:
movl 4 (%hesp), %hedx
pushl  Jedx
pushl  Jedi
pushl  Jesi
pushl  Jebx
movl 28(hesp), hecx
movl 32(hesp), hesi
movl 20 (%esp), hebx
movl 24 (hesp), hedi

cmpl hesi, hecx
jle .L84

popl hebx

movl %hedi, %eax
popl hesi

popl hedi

movl 4 (%esp), hedx
popl  Jesp

pushl  Jedx

ret

.L84:

movl 16 (%esp) , %eax
leal 1(%ecx), %hedx
leal (%hecx,%edi), %hecx
movl heax, -20(%ebx)
movl %hesi, -4(%ebx)
movl %edx, -8(%ebx)
movl %hecx, —-12(%ebx)
movl %ebx, -16(%ebx)

popl hebx
popl hesi
popl hedi
popl hesp
subl $20, %esp
jmp fav2

This is in stark contrast to the code using the standard calling convention:
favl:

movl 8(%esp), hedx
movl 12(%esp) , %eax
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movl 4 (%hesp), hecx

cmpl heax, hedx
jle .1L88

movl hecx, heax
ret

.1L88:
pushl Jeax
leal 1(%edx), %heax
pushl  Jeax

leal (hedx,%hecx), %heax
pushl  Jeax

call fav2

addl $12, Jesp

ret

The differences between these two versions are twofold:

e The code with the proptail convention has to rewrite the stack, which
not only means that it has to cope with an additional argument, namely
the bottom pointer, but also with the return address, which it must
relocate. This is a direct effect of the proptail convention.

e Having to reorganize the stack results in the three callee-saved registers
to be used, which must thus be saved in the prologue and restored in
the epilogues. This is an indirect effect of the proptail convention.

The code generated for fav2 shows similar differences between the two
calling conventions.

In order to measure to what amount the register saving and restoring
contributes to run-time, the two functions in their standard calling conven-
tion versions have been modified to save and restore the three callee-saved
registers, even though they are not used in the bodies. This is the code of
the modified fav1 function:

favi:

pushl  Jedi

pushl  Jesi

pushl  Jebx

movl 20 (%esp), ‘hedx
movl 24 (%esp) , ‘heax
movl 16 (Yiesp), hecx
cmpl heax, hedx
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jle .188

movl %hecx, heax
popl hebx

popl hesi

popl hedi

ret

.L88:
pushl  Jeax
leal 1(%edx), %heax
pushl Jeax
leal (hedx,%hecx), %heax
pushl  Jeax
call fav2
addl $12, Yesp

popl hebx
popl hesi
popl hedi
ret

The run-time of the loop with the modified functions is 13.27 seconds,
meaning that the stack reorganizing dictated by the requirements of a proper
tail call accounts for a difference of about 3.2 seconds, which is quite plau-
sible when compared to the run-times on the Alpha, given that the Alpha
proptail version needs not relocate the return address, since it is passed in
a register, and saves two argument registers (see section 6.9.2 for why some
argument registers are saved on the stack in variable argument functions)
less on the stack than the standard calling convention version, since it takes
one argument more (the bottom pointer).
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Chapter 8

Conclusion and Further Work

In the preceding chapters I have motivated the need for a way to produce
properly tail recursive C code and have described the obstacles such an un-
dertaking poses. I have described a calling convention which allows proper
tail calls in C and have presented an implementation of this calling conven-
tion for the Alpha and the i386 architectures. I have shown that this calling
convention provides acceptable performance and has the potential of out-
performing the standard C calling convention under some circumstances if
properly optimized.

In this chapter I want to outline some improvements to the implementa-
tion, sketch some features which would be useful in conjunction with proper
tail calls and describe an implementation technique for functional languages
made possible by proper tail calls.

One optimization exemplified in chapter 7 is not to allocate stack frames
for function which only make tail calls. On RISC architectures, this would
make such tails calls as cheap as jumps.

In order to overcome the performance penalty proper tail calls have on the
1386 compared to calls using the standard convention, it might be worthwhile
to consider changing the proptail convention on the 1386 a bit. By reserving
a fixed minimum amount of space for outgoing arguments on the stack and
placing the return address at the top of that space, the copying of the return
address is made unnecessary for all proper tail calls from functions taking
at most that amount of incoming arguments to functions with the same
property. The amount of minimum argument space actually used should be
determined by empirical tests. Clearly, the larger that amount is, the less
cases there are in which the return address must be copied, but the more
stack space is used.

Another approach to solve this problem might work if call and ret are
abandoned altogether: Instead of passing the return address as an implicit
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first argument (aided by the call instruction), passing it as an implicit
last argument makes moving it around on the stack unnecessary for proper
tail call chains. The call would have to be split up into push and jmp
instructions for this to work. The problem is that this would cause the
processor-internal return address stack to be invalidated if function return is
implemented with the ret instruction, since return address stack consistency
is only guaranteed if calls and rets match exactly. Obviously, this can be
prevented by implementing function return with jmp. Whether this really
improved performance has to be tested.

[Bak95] describes a technique for compiling functional code to C by emit-
ting CPS transformed code. This code has the property that all function
calls are tail calls. In addition, this technique allocates storage on the C
stack and, upon stack overflow, does a precise, copying garbage collection
of the C stack. Since no function ever returns, the garbage collector can be
ignorant about stack layout. It only needs to know all roots and the layout
of the data objects.

GCC already implements a function attribute called noreturn. It signi-
fies that a function cannot return and GCC can optimize the caller of such
a function without having to regard the consequences of the function ever
returning. Unfortunately, it does not optimize the function itself. Obviously,
since the function can never return, there is no need to save either callee-
saved registers or the return address. Furthermore, local variables would
have to be preserved for the last call in the function only if their address
might have been taken (see section 6.5). These optimizations would not only
speed the code generated by Baker’s compilation technique up directly, but
would also slow down stack growth, resulting in further speedup due to less
frequent garbage collection.

By changing Baker’s technique slightly using the proptail convention, we
arrive at the C equivalent of what some native code compilers for functional
languages, like SML/NJ [App92], do. Using a heap instead of the C stack to
allocate data structures, all function calls can be implemented as proper tail
calls, making the stack not grow at all. Since all garbage collection roots are
known (they consist of global variables and the arguments to the currently
executed function), garbage collection can still be precise.

8.1 Acknowledgements

I thank Anton Ertl, Andreas Krall and Ulrich Neumerkel for their help and
suggestions on this work.

I thank Philipp Tomsich for providing me with access to SPARC and
PowerPC machines.

68



Appendix A

Tail-Annotated C Grammar

function-definition.:
declaration-specifiers declarator declaration-list,,, compound-statement,,

statement-wo-break,,;:
labeled-statement,,;
compound-statement,,;
expression-statement,,;
selection-statement,,;
iteration-statement
Jjump-statement

labeled-statement,,;:
identifier : statement,,;
case constant-expression : statement,,;
default : statement,,;

expression-statement,,;:
CLPTESSIONy4il opt 3

selection-statement,,;:
if ( expression ) statement,,;
if ( expression ) statement,,; else statement,,;
switch ( expression ) statement,,;

compound-statement,,;:
{ block-item-list,y;; o }

block-item-list,,;:
block-item-wo-break,,;
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break ;
break ; block-item-list,,;
block-item-wo-break,,; break ;
block-item-wo-break,,; break ; block-item-list,,;
block-item-wo-break block-item-list-wo-break,,;
block-item-list-wo-break,,;:

block-item-wo-break,,; break ;

block-item-wo-break,,; break ; block-item-list,,;

block-item-wo-break block-item-list-wo-break,,;
block-item-wo-break:

declaration

statement-wo-break

block-item-wo-break,,;:
declaration
statement-wo-break,,;

statement-wo-break:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
Jump-statement-wo-break

statement-wo-break,,;:
labeled-statement,,;
compound-statement,,;
expression-statement,,;
selection-statement,,;
iteration-statement
Jump-statement-wo-break

Jump-statement-wo-break:
goto identifier ;
continue ;
return expression.q qp;

jump-statement:
goto identifier ;

70



continue ;
break ;
return exrpression,,; opt

ETPTeSSION, 41"
assignment-exrpression,;
eTpression , asSsignMment-erpression,q;

assignment-expression, ;.
conditional-expression,,;
UNGTY-eTPression assignment-operator assignment-eTpression

conditional-expression,,;:
logical-OR-expression,,;
logical-OR-expression 7 expression,,; : conditional-expression,,;

logical-OR-expression,,;:
logical-AND-expression,,;
logical-OR-expression || logical-AND-expression

logical-AND-expression,,;:
inclusive-OR-expression,,;
logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression, ,;:
exclusive-OR-expression,,;
inclusive-OR-expression | exclusive-OR-expression

exclusive- OR-expression,,;:
AND-expression,,;
exclusive-OR-expression = AND-expression

AND-expression,,;:
equality-expression,,;
AND-expression & equality-expression

equality-expression, ;:
relational-expression,,;
equality-expression == relational-expression
equality-expression '= relational-expression
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relational-expression,,;:
shift-expression,,;
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression,,;:
additive-expression,,;
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression,,;:
multiplicative-expression,,;

additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

multiplicative-expression,;:
cast-eTpression,
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression J, cast-expression

cast-erpression, i
UNATY-ETPTESSLON, 45
( type-name ) cast-expression

UNArY-eTpression, i’
postfix-expression,,;
++ unary-ezxpression
—= UNAry-erpression
UNATY-0perator cast-erpression
sizeof unary-erpression
sizeof ( type-name )

POStfix-expression,,;:
Primary-expression, ;
postfiz-expression [ expression ]
function-call,,;
postfiz-expression _ identifier
postfiz-expression —> identifier
postfix-expression ++
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postfiz-expression —=
( type-name ) { initializer-list }
( type-name ) { initializer-list , }

function-call,,;:
postfiz-expression ( argument-expression-list,,, )

PTIMATY-ETPTESSION, 041"
identifier
constant
string-literal
( expression,,; )
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